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20 Years in Free Modal Algebras Constructions

Step-by-step constructions of free modal algebras have longstanding
tradition:

they can traced back to Fine normal forms (1975);
Abramsky (1988, published much later in 2005);
Ghilardi (1995; for Heyting case 1992, for S4 case 2010);
coalgebraic literature (N. Bezhanishvili, Kurz, Kupke, Gehrke,
Pattinson, Schröder, Venema, ... 2000–> );
recent advances in a paper by Coumans-vanGool (JLC 2013)
followed by (N. Bezhanishvili, Ghilardi, Jibladze, in press);
diagonalizable algebras case in (vanGool, AiML 2014).
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20 Years in Free Modal Algebras Constructions

Coumans-van Gool emphasis is on partial algebras; a light
reformulation of their point of view uses two-sorted structures.

These are called step-algebras and step-frames in (N.
Bezhanishvili-Ghilardi-Jibladze, in press).

We review step-algebras and step-frames and then discuss ongoing
work concerning proof theoretic applications

We outline the kind of proof theoretic aspects we want to investigate.
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Logics and Inference Systems

A logic L is a set of formulae containing tautologies, Aristotle’s law and
closed under necessitation, modus ponens and uniform substitution.

An inference system Ax for L is a set of inference rules

φ1(x), . . . , φn(x)

ψ(x)

satisfying the following conditions
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Logics and Inference Systems

all rules in Ax are derivable from L;
from the rules in Ax all formulae in L are provable;
all formulae occurring as premises or as conclusions of rules in
Ax have modal degree at most 1.

Rules satisfying the last condition are called reduced; non-reduced
rules can be equivalently (for our purposes) replaced by reduced ones.
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Logics and Inference Systems

For every L one can find an Ax which is suitable for L (there are also
canonical methods for that), but ...
... not all equivalent inference systems are proof-theoretically equally
good ...
... for some of them proof search may become intricated ...
... we want at least the following: to prove a formula φ, only formulae
up to the modal degree of φ are needed.

Since the above property leads to decidability, it won’t be possible to
get it in general, but we want to have some criteria to recognize good
systems.
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Logics and Inference Systems

As an example, take GL-system. It can be axiomatized by the single
axiom �(�x → x)→ �x .
An inference system for L consists of transitivity and Gödel-Löb rules

�+y → x
�y → �x

�x → x
x

(1)

An alternative one (the good one!) consists of the rule

�+x ∧�y → y
�x → �y

(2)
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Logics and Inference Systems

Given a logic L, for a finite set of formulae Γ and for a formula φ, we
write

Γ `L φ (3)

for the global consequence relation: this means that φ has a proof from
axioms and rules of L with premises Γ (uniform substitution applies
only to formulae in L, not to formulae in Γ). For transitive systems,
Γ `L φ is the same as �+(

∧
Γ)→ φ ∈ L.

For axioms systems Ax , we have a similar notion

Γ `Ax φ (4)

Notice that if Ax is an inference system for L, the relations (3) and (4)
are equivalent.
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Logics and Inference Systems

Definition
An inference system Ax has the bounded proof property (bpp) iff
whenever Γ `Ax φ holds, there is a proof in Ax of φ with premises Γ in
which formulae not exceeding the modal degree of formulae in Γ, φ
occur.

Definition
A logic L has the finite model property (fmp) iff whenever Γ `Ax φ does
not hold, then there is a Kripke model based on a finite frame for L
where the Γ are everywhere true and φ is not.
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Outline

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
Step Frame Characterizations
Stable Classes
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Ordinary Rules Step algebras and step frames

One-Step Modal Algebras

Definition
1 A one-step modal algebra is a quadruple (A0,A1, i0,♦0), where

A0,A1 are Boolean algebras, i0 : A0 → A1 is a Boolean morphism,
and ♦0 : A0 → A1 is a semilattice morphism. The algebras A0,A1
are called the source and the target Boolean algebras of the
one-step modal algebra (A0,A1, i0,♦0).

2 A one-step extension of the one-step modal algebra (A0,A1, i0,♦0)
is a one-step modal algebra (A1,A2, i1,♦1) satisfying i1♦0 = ♦1i0.
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Ordinary Rules Step algebras and step frames

Applying Duality

To get a better understanding of the situation, it is nice to apply duality.
Since we are interested in finite algebras, duality needs not topological
machinery and is easy.

Definition
1 A one-step frame is a quadruple (W1,W0, f ,R), where W0,W1 are

sets, f : W1 −→W0 is a function and R ⊆W1 ×W0 is a relation.
2 A one-step extension of the one-step frame (W1,W0, f ,R) is a

one-step frame (W2,W1,g,S) satisfying f ◦ S = g ◦ R.
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Ordinary Rules Step algebras and step frames

Step Correspondence Theory

We need to define what it means for for (the dual of) a one-step frame
(W1,W0, f ,R) to validate an inference rule. The definition is almost
straightforward; we illustrate it via the example of the K4 rule

�+y → x
�y → �x

This happens iff

∀x , y ⊆W0 (f ∗(x) ∩�Rx ⊆ f ∗(y)⇒ �Rx ⊆ �Ry). (5)

The idea is to apply the step version of correspondence theory in order
to eliminate the second order quantifiers via Ackermann rule.
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Ordinary Rules Step algebras and step frames

Step Correspondence Theory

Applying adjunction ∃f a f ∗, Ackermann rule, set-theoretic definition of
⊆, definition of �R and Ackermann rule again we get:

∀x , y ⊆W0. f ∗(x) ∩�Rx ⊆ f ∗(y)⇒ �Rx ⊆ �Ry
∀x , y ⊆W0. ∃f (f ∗(x) ∩�Rx) ⊆ y ⇒ �Rx ⊆ �Ry
∀x ⊆W0. �Rx ⊆ �R ∃f (f ∗(x) ∩�Rx)

∀x ⊆W0. �Rx ⊆ �R ∃f (�Rx)

∀x ⊆W0∀w ∈W0. w ∈ �Rx ⇒ w ∈ �R ∃f (�Rx).

∀x ⊆W0 ∀w ∈W0. R(w) ⊆ x ⇒ w ∈ �R ∃f (�Rx)

∀w ∈W0. w ∈ �R ∃f (�RR(w)).
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Ordinary Rules Step algebras and step frames

Step Correspondence Theory

Last condition reads as:

∀w ∀v (R(w , v)→ ∃w1 (f (w1) = v & R(w1) ⊆ R(w))) . (6)

The possibility of getting a first order condition is subject to sufficient
syntactic conditions very similar to those of Sahlqvist theorem.
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Ordinary Rules The Step Embedding Theorem

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
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Ordinary Rules The Step Embedding Theorem

The Step Embedding Theorem

Definition
A one-step frame (W1,W0, f ,R) is conservative iff (i) f is surjective and
(ii) for every w1,w2 ∈W1 we have that

f (w1) = f (w2) & R(w1) = R(w2) ⇒ w1 = w2. (7)

Dually, a one-step modal algebra (A0,A1, i ,♦) is conservative iff (i) i is
injective and (ii) the set

{i(a) | a ∈ A0} ∪ {♦a | a ∈ A0}

generate A1 as a Boolean algebra.
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Ordinary Rules The Step Embedding Theorem

The Step Embedding Theorem

Theorem
Let Ax be an inference system for a logic L. Then every finite
conservative step-frame validating Ax is a p-morphic image of a finite
Kripke frame for L iff Ax has the bpp and L has the fmp.

Kripke frames are here seen as step-frames with identical step
transition function f ; the notion of a p-morphism between step-frames
is the obvious one.
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Ordinary Rules The Step Embedding Theorem

The Step Embedding Theorem

A p-morphism between step frames F ′ = (W ′
1,W

′
0, f
′,R′) and

F = (W1,W0, f ,R) is a pair of surjective maps
µ : W ′

1 −→W1, ν : W ′
0 −→W0 such that

f ◦ µ = ν ◦ f ′ and R ◦ µ = ν ◦ R′ . (8)

W ′
1 W1

W ′
0 W0

ν

f

µ

f ′

W ′
1 W1

W ′
0 W0

ν

R

µ

R′
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Ordinary Rules An Example
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Ordinary Rules An Example

An example

Using the above theorem, it is easy to prove fmp and bpp for simple
logics like K ,K 4,T ,S4, . . . . As an example, let us consider the density
axiom ��x → �x (we add this axiom to K ).

First, we turn the axiom into a rule; there is a default naif method for
that giving

y → �x
�y → �x

. (9)

Second, applying step correspondence, we get the following first-order
characterization for validation of (9) in step frames:

∀w∀v (wRv ⇒ ∃k (wRf (k) & kRv)) (10)
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Ordinary Rules An Example

An example

Third, we fix a finite conservative step-frame S = (W1,W0, f ,R)
satisfying (10); we must find a finite frame F = (V ,S) which dense in
the standard sense

∀w∀v (wSv ⇒ ∃k (kSv & wSk)). (11)

and a surjective map µ : V −→W1 such that R ◦ µ = f ◦ µ ◦ S.

The idea is to take V := W1 and µ := idW1 , so that we need to check

∀w∀v (wRv ⇔ ∃w ′ (wSw ′ & f (w ′) = v)). (12)
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Ordinary Rules An Example

An example

Some ingenuity is needed in the general case to find the appropriate S
but there are templates. Our template is

∀w∀w ′ (wSw ′ ⇔ ∃v (wRv & f (w ′) = v)). (13)

Thus, taking into consideration that f is also surjective (because S is
conservative)

∀v ∃w f (w) = v , (14)

we need the validity of the implication

(14) & (10) & (13) ⇒ (12) & (11).
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Ordinary Rules An Example

An example

The implication

(14) & (10) & (13) ⇒ (12) & (11).

can be shown to be valid manually or by a prover (SPASS solves the
problem in less than half a second; the superposition proof it finds
takes 47 lines).

As a consequence of this we get altogether bpp, fmp and first order
definability (decidability and canonicity also follows by general
reasons).
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Ordinary Rules An Example

An example

Let’s summarize the three steps:
- First: produce the inference rules (there are automatic methods,

not always they give the good rules).
- Second: apply correspondence theory (this is automatic).
- Third: produce p-morphic extensions to standard frames (not

automatic, but there are templates); provers can discharge the
final proof obbligation.
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Ordinary Rules Some Case Studies

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
Step Frame Characterizations
Stable Classes
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Ordinary Rules Some Case Studies

Some case studies

We wonder to which extent the above mechanization of the
metatheory can be pushed.
We analyzed some more significant cases. The first case is GL system
axiomatized by the single axiom �(�x → x)→ �x .

First Step can be driven so that to obtain a rule which is equivalent (for
our purposes) to the well-known rule

�+x ∧�y → y
�x → �y
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Ordinary Rules Some Case Studies

Some case studies

Second Step (via Ackermann rule applied to fixpoint logic) gives

∀w R(w) ⊆ µ(Y ,w)∃f (f ∗(R(w)) ∩�RR(w) ∩�RY ). (15)

In finite one-step frames this simplifies to

∀w (R(w) ⊆ {f (w ′) | R(w ′) ⊂ R(w)}) . (16)

Notice that ⊂ is strict inclusion, so the above condition is a ‘step’
irreflexivity.

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 30 / 57



Ordinary Rules Some Case Studies

Some case studies

Second Step (via Ackermann rule applied to fixpoint logic) gives

∀w R(w) ⊆ µ(Y ,w)∃f (f ∗(R(w)) ∩�RR(w) ∩�RY ). (15)

In finite one-step frames this simplifies to

∀w (R(w) ⊆ {f (w ′) | R(w ′) ⊂ R(w)}) . (16)

Notice that ⊂ is strict inclusion, so the above condition is a ‘step’
irreflexivity.

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 30 / 57



Ordinary Rules Some Case Studies

Some case studies

Third Step is not difficult, but is not fully automatic. We can use the
template S for transitive systems, but then the resulting Kripke frame is
not irreflexive, so one needs to take the dijoint union of the irreflexive
subframes satisfying (12).

It should be noticed that, if we do the same analysis for the system
axiomatized by transitivity and Löb rule, we get a weaker condition
than (15). Using the fact that the condition is too weak, it is possible to
prove formally that bpp fails.
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Ordinary Rules Some Case Studies

Some case studies

Our second case study is the system S4.3 axiomatized via S4
reflexivity and transitivity axioms plus �(�x → y) ∨�(�y → x).

First step: the inference rule extracted automatically from the axiom is
not good (bpp fails). Instead, we use Goré infinitely many rules:

· · ·�y → xj ∨
∨

j 6=i �xi · · ·
�y →

∨n
i=1 �xi

(17)

The rules are indexed by n and the n-th rule has n premises, according
to the values j = 1, . . . ,n.
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Ordinary Rules Some Case Studies

Some case studies

Second Step: correspondence theory applies to these rules.
Interpreting the results in finite frames one gets

∀w ∀S ⊆ R(w) ∃v ∈ S ∃w ′ (f (w ′) = v & S ⊆ R(w ′) ⊆ R(w)). (18)

Third Step: the same method used in GL case shows that one-step
frames satisfying (18) are p-morphic images of Kripke frames for S4.3.
This establishes bpp and fmp.
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Ordinary Rules Some Case Studies

Some case studies

As a further case study let us consider S5.

First Step The following rule has been proposed in the literature:

�Γ⇒ y ,�∆

�Γ⇒ �y ,�∆
. (19)

In the resulting system, cuts cannot be completely eliminated, but can
be limited to subformulae of the sequent to be proved. This ‘analytic’
cut-elimination property is sufficient to imply the bpp, and thus we
should be able to get the bpp directly by our methods.
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Ordinary Rules Some Case Studies

Some case studies

Second Step Correspondence theory gives

∀w∀v (wRv → ∃w̃ (f (w̃) = v & R(w) = R(w̃))). (20)

Third Step Step frames satisfying the above property are easily seen
to be p-morphic images of reflexive, transitive, symmetric Kripke
frames; this establishes bpp and fmp.
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Ordinary Rules Some Case Studies

Some case studies

As a final case study consider the system obtained by adding to K the
axiom ��x ↔ �x . This is density+transitivity; we can join the rules we
already used for density and transitivity. This is not a good idea: bpp
fails!
Instead, we use the following couple of rules suggested to us by G.
Mints:

�+Γ→ α

�Γ→ �α
Γ,�∆⇒ �α
�Γ,�∆⇒ �α

(21)
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Ordinary Rules Some Case Studies

Some case studies

Second Step Correspondence theory gives, besides step
transitivity (6), the condition

∀w∀v (wRv → ∃w ′ (w ′Rv & {f (w ′)} ∪ R(w ′) ⊆ R(w))). (22)

Third Step Step frames satisfying the above property are easily seen
to be p-morphic images of transitive and dense Kripke frames; this
establishes bpp and fmp.

Notice that the fact that (10)+ (6) do not imply (22) is a formal
argument proving that bpp fails is we adopt the old rule (9) in a
transitive context. Thus, at least in principle, model finders can be
used as automatic supports for showing that bpp fails.

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 37 / 57



Ordinary Rules Some Case Studies

Some case studies

Second Step Correspondence theory gives, besides step
transitivity (6), the condition

∀w∀v (wRv → ∃w ′ (w ′Rv & {f (w ′)} ∪ R(w ′) ⊆ R(w))). (22)

Third Step Step frames satisfying the above property are easily seen
to be p-morphic images of transitive and dense Kripke frames; this
establishes bpp and fmp.

Notice that the fact that (10)+ (6) do not imply (22) is a formal
argument proving that bpp fails is we adopt the old rule (9) in a
transitive context. Thus, at least in principle, model finders can be
used as automatic supports for showing that bpp fails.

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 37 / 57



Ordinary Rules Some Case Studies

Some case studies

Second Step Correspondence theory gives, besides step
transitivity (6), the condition

∀w∀v (wRv → ∃w ′ (w ′Rv & {f (w ′)} ∪ R(w ′) ⊆ R(w))). (22)

Third Step Step frames satisfying the above property are easily seen
to be p-morphic images of transitive and dense Kripke frames; this
establishes bpp and fmp.

Notice that the fact that (10)+ (6) do not imply (22) is a formal
argument proving that bpp fails is we adopt the old rule (9) in a
transitive context. Thus, at least in principle, model finders can be
used as automatic supports for showing that bpp fails.

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 37 / 57



Multiconclusion Rules

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
Step Frame Characterizations
Stable Classes

N. Bezhanishvili - S. Ghilardi (AmU & UNIMI) Step Frames Analysis LATD 2014 38 / 57



Multiconclusion Rules

Why many conclusions?

A multiple-conclusion rule is a pair of finite sets of formulae 〈Γ,S〉.

If Γ = {γ1, . . . , γn},S = {δ1, . . . , δm}, we write the rule 〈Γ,S〉 as Γ/S or
as

γ1, . . . , γn

δ1 | · · · | δm
(R)

The formulae Γ = {γ1, . . . .γn} are said to be the premises of the rule
(R) and the formulae S = {δ1, . . . , δm} are said to be the conclusions
of the rule (R).

The rule (R) is valid in a modal algebra (A,�) iff for every valuation V

V (γ1) = 1 & · · · & V (γn) = 1 ⇒ V (δ1) = 1 or · · · or V (δm) = 1 .

Thus rule validity defines a universal class (not a variety!).
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Multiconclusion Rules

Why many conclusions?

Multiple-conclusion rules recently gained attention in the literature from
many points of view.
From an algebraic and a semantic point of view, (Kracht 07, Jerabek
09, N. & G. Bezhanishvili & Iemhoff 2014), they constitute an essential
tool for investigating classes of algebras beyond varieties and they
supply nice canonical formulae axiomatizations.
From a completely different research perspective, the proof-theoretic
oriented community (since Avron 96) realized that standard sequent
formalisms are insufficient to handle complex logics and moved to
more expressive hypersequent calculi.
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Multiconclusion Rules

Why many conclusions?
Compare e.g. the simplicity of the hypersequent rule

Γ̃,�Γ,�Γ′⇒∆ Γ̃′,�Γ′,�Γ⇒∆′

Γ̃,�Γ⇒∆ | Γ̃′,�Γ′⇒∆′
(Dich)

for S4.3 with the above Goré rules.
Rule (Dich) can be rewritten as multiconclusion rule to

�γ ∧�γ′ → δ �γ′ ∧�γ → δ′

�γ → δ | �γ′ → δ′

Notice however that (Dich) does not define the variety of S4.3
algebras but a universal class of algebras

∀x ∀y (�x ≤ �y or �y ≤ �x)

generating it.
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Multiconclusion Rules A Hilbert calculus for hyperformulae

Derived Rules

Let K be a set of multiple-conclusion rules; a multiple-conclusion rule
Γ/S is derivable from K - written K ` Γ/S iff every modal algebra
validating all rules in K validates also Γ/S.

In the terminology of modal rule systems (Jerabek 09, N. & G.
Bezhanishvili & Iemhoff 2014), it can be proved that this equivalently
means that Γ/S belongs to the smallest modal rule system including
K .

What we want to build here is a Hilbert style calculus for recognizing
K ` Γ/S. This calculus will consequently be complete also for global
consequence relation in K .
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Multiconclusion Rules A Hilbert calculus for hyperformulae

Hyperformulae and derivations

Our calculus will manipulate hyperformulae, seen as disjunctions of
global assertions (this is the shape of conclusions of our
multi-conclusion rules).

A hyperformula is a finite set of propositional formulae written in the
form

α1 | · · · | αn. (23)

We use letters S,S1,S′, . . . for hyperformulae; the notation S | S′
means set union and S | α and α | S stand for S | {α} and {α} | S,
respectively.
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Multiconclusion Rules A Hilbert calculus for hyperformulae

Hyperformulae and derivations

Definition

Let Γ be a set of propositional modal formulae and let K be a set of
multiple-conclusion rules. A K -hyperproof (or a K -derivation or just a
derivation) under assumptions Γ is a finite list of hyperformulae
S1, . . . ,Sn such that each Si in it matches one of the following
requirements:

(i) Si is of the kind α | S, where α ∈ Γ or α is a tautology or α
is an instance of the K distribution axiom;

(ii) Si is obtained from hyperformulae preceding it by
applying a rule from K or the necessitation rule or the
modus ponens rule.

We write Γ `K S to mean that there is a K -derivation ending with S.
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Multiconclusion Rules A Hilbert calculus for hyperformulae

Hyperformulae and derivations

An important remark is in order for (ii): when we say that Si is obtained
by applying an inference rule, we include uniform substitution and
weakening in the application of the rule. Thus, if the rule is

γ1, . . . , γn

δ1 | · · · | δm
(R)

when we say that Si is obtained from (R), we mean that there are a
hyperformula S and a substitution σ such that Si is of the kind
S | δ1σ | · · · | δmσ and that there are j1, . . . , jn < i such that Sj1 is of the
kind S | γ1σ, and . . . and Sjn is of the kind S | γnσ.
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Multiconclusion Rules A Hilbert calculus for hyperformulae

Hyperformulae and derivations

In other words, when rule (R) is used, we apply a substitution to its
contextual form

γ1 | S, . . . , γn | S
δ1 | · · · | δm | S

(R)

Proposition
We have K ` Γ/S iff there is a K -derivation under assumptions Γ
ending in S.
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Multiconclusion Rules Step Frame Characterizations

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
Step Frame Characterizations
Stable Classes
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Multiconclusion Rules Step Frame Characterizations

The Step embedding theorem (hyper version)

It is routine to define what it means for a modal calculus K (seen as a
set of reduced multiconclusion rules) to enjoy fmp and bpp.
It is also routine to define validation of a reduced multiconclusion rule
in a step algebra and in a step frame. We have

Theorem
Let K be a modal calculus. Then K enjoys both bpp and fmp iff every
finite conservative step-frame validating K is a p-morphic image of a
finite Kripke frame validating K .

As examples you can take the calculi obtained by translating
hypersequent rules for S4.3,S5 into multiconclusion rules (these
systems axiomatize the class of corresponding prime algebras).
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Multiconclusion Rules Stable Classes

1 Ordinary Rules
Step algebras and step frames
The Step Embedding Theorem
An Example
Some Case Studies

2 Multiconclusion Rules
A Hilbert calculus for hyperformulae
Step Frame Characterizations
Stable Classes
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Multiconclusion Rules Stable Classes

Homomorphic Images and Stability

A stable embedding of a modal algebra A = (A,♦) into a modal
algebra B = (B,♦) is an injective Boolean morphism µ : A→ B such
that we have ♦µ(x) ≤ µ(♦x) for all x ∈ A.
A class C of modal algebras is said to be stable iff whenever B ∈ C and
A has a stable embedding into B, then A ∈ C too.

We have dual notions for frames. F = (W ,R) is a homomorphic image
of F′ = (W ′,R′) iff there is a surjective map f : W ′ →W such that xRy
implies f (x)R′f (y) for all x , y ∈W ′ (in case F,F′ are descriptive, f is
asked to be continuous too).
A class of (ordinary or descriptive) frames is said to be stable iff it is
closed under homomorphic images.
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Multiconclusion Rules Stable Classes

Homomorphic Images and Stability

A modal calculus K is stable iff so is the class of modal algebras
validating it (equivalently: the class of descriptive frames validating it).

The following Theorem is proved in (N. & G. Bezhanishvili & Iemhoff
2014):

Theorem
(i) A modal calculus K is stable iff it is axiomatizable via

stable characteristic rules.
(ii) A stable modal calculus enjoys fmp.
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Multiconclusion Rules Stable Classes

Stable Characteristic Rules

Stable characteristic rules are the rules associated with finite Kripke
frames in the following way.

Let F = (F ,RF ) be a finite frame. For every a ∈ F we introduce a new
propositional variable xa. The modal stable rule of F is∨n

i=1 xai ,
∧

i 6=j ¬(xai ∧ xaj ),
∧n

i=1(xai → �
∨

b∈RF (ai )
xb)

¬xa1 | · · · | ¬xan

(rF)

where we suppose that F = {a1, . . . ,an}.
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Multiconclusion Rules Stable Classes

Stable Characteristic Rules

The following proposition is proved in (N. & G. Bezhanishvili & Iemhoff
2014):

Proposition
Let A = (A,♦) be a modal algebra. Then

1 A does not validate (rF) iff there is a stable embedding of F∗ into
A.

2 A does not validate (rF) iff there is a surjective stable map from A∗
onto F.
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Multiconclusion Rules Stable Classes

Bpp for Stable Calculi

To get bpp however we need to modify rules (rF) as shown below.

∨n
i=1 xai ,

∧
i 6=j ¬(xai ∧ xaj ),

∧n
i=1(xai → �rai ),

∧n
i=1(rai →

∨
b∈RF (ai )

xb)

¬xa1 | · · · | ¬xan

Lemma

Rules (r+F ) and (rF) are inter-derivable.
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Multiconclusion Rules Stable Classes

Bpp for Stable Calculi

Theorem
Any modal calculus axiomatized by rules of the kind (r+F ) enjoys bpp
and fmp.

Corollary
Let C be a stable class of (ordinary) Kripke frames such that
membership of a finite frame to C is decidable. Then validity of a
formula (more generally, of a rule) in C is decidable as well.
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Multiconclusion Rules Stable Classes

Conclusions

step methods seem to be quite effective in jointly proving bpp and
fmp;
in simple cases the application of the methods is fully automatic
(in a sense we are mechanizing the metatheory of modal logic!);
in more complex cases some ingenuity is needed, still uniform
arguments often work;
entire classes of logics can be covered (see the above results on
stable classes);
the scalability of the methods is to be tested for more complicated
logics arising in computer science applications.
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